Fast Bayesian Factor Analysis via Automatic Rotations to Sparsity

نویسندگان

  • Veronika Ročková
  • Edward I. George
چکیده

Rotational transformations have traditionally played a key role in enhancing the interpretability of factor analysis via post-hoc modifications of the factor model orientation. Regularization methods also serve to achieve this goal by prioritizing sparse loading matrices. In this work, we cross-fertilize these two paradigms within a unifying Bayesian framework. Our approach deploys intermediate factor rotations throughout the learning process, greatly enhancing the effectiveness of sparsity inducing priors. These automatic rotations to sparsity are embedded within a PXL-EM algorithm, a Bayesian variant of parameter-expanded EM for posterior mode detection. By iterating between soft-thresholding of small factor loadings and transformations of the factor basis, we obtain (a) dramatic accelerations, (b) robustness against poor initializations and (c) better oriented sparse solutions. For accurate recovery of factor loadings, we deploy a two-component refinement of the Laplace prior, the spike-and-slab LASSO prior. This prior is coupled with the Indian Buffet Process (IBP) prior to avoid the pre-specification of the factor cardinality. The ambient dimensionality is learned from the posterior, which is shown to reward sparse matrices. Our deployment of PXL-EM performs a dynamic posterior exploration, outputting a solution path indexed by a sequence of spike-and-slab priors. A companion criterion, motivated as an integral lower bound, is provided to effectively select the best recovery. The potential of the proposed procedure is demonstrated on both simulated and real high-dimensional data, which would render posterior simulation impractical.

منابع مشابه

Models of Random Sparse Eigenmatrices with Application to Bayesian Factor Analysis

We discuss a new class of models for random covariance structures defined by probability distributions over sparse eigenmatrices. The decomposition of orthogonal square matrices in terms of Givens rotations defines a natural, interpretable framework for defining prior distributions over the sparsity structure of random eigenmatrices. We explore some theoretical aspects and implications for cond...

متن کامل

Models of Random Sparse Eigenmatrices & Bayesian Analysis of Multivariate Structure

We discuss probabilistic models of random covariance structures defined by distributions over sparse eigenmatrices. The decomposition of orthogonal matrices in terms of Givens rotations defines a natural, interpretable framework for defining distributions on sparsity structure of random eigenmatrices. We explore theoretical aspects and implications for conditional independence structures arisin...

متن کامل

Sparse Bayesian Factor Analysis for Stereo-based Stochastic Mapping

This paper investigates a factor analysis scheme in the joint channel space of stereo-based stochastic mapping (SSM) for noise robust automatic speech recognition. A mixture of Bayesian factor analyzers is used to describe the generative factors in the multi-conditional training scenario in terms of noise type and signal-to-noise ratio. Sparsity-promoting prior is applied on the matrix of facto...

متن کامل

Bayesian group factor analysis with structured sparsity

Latent factor models are the canonical statistical tool for exploratory analyses of lowdimensional linear structure for an observation matrix with p features across n samples. We develop a structured Bayesian group factor analysis model that extends the factor model to multiple coupled observation matrices; in the case of two observations, this reduces to a Bayesian model of canonical correlati...

متن کامل

Mixtures of Bayesian joint factor analyzers for noise robust automatic speech recognition

This paper investigates a noise robust approach to automatic speech recognition based on a mixture of Bayesian joint factor analyzers. In this approach, noisy features are modeled by two joint groups of factors accounting for speaker and noise variabilities which are estimated by clean and noisy speech respectively. The factors form an overcomplete dictionary with a redundant representation. Au...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014